1 /**
2  * This module provides an interface to the garbage collector used by
3  * applications written in the D programming language. It allows the
4  * garbage collector in the runtime to be swapped without affecting
5  * binary compatibility of applications.
6  *
7  * Using this module is not necessary in typical D code. It is mostly
8  * useful when doing low-level _memory management.
9  *
10  * Notes_to_users:
11  *
12    $(OL
13    $(LI The GC is a conservative mark-and-sweep collector. It only runs a
14         collection cycle when an allocation is requested of it, never
15         otherwise. Hence, if the program is not doing allocations,
16         there will be no GC collection pauses. The pauses occur because
17         all threads the GC knows about are halted so the threads' stacks
18         and registers can be scanned for references to GC allocated data.
19    )
20 
21    $(LI The GC does not know about threads that were created by directly calling
22         the OS/C runtime thread creation APIs and D threads that were detached
23         from the D runtime after creation.
24         Such threads will not be paused for a GC collection, and the GC might not detect
25         references to GC allocated data held by them. This can cause memory corruption.
26         There are several ways to resolve this issue:
27         $(OL
28         $(LI Do not hold references to GC allocated data in such threads.)
29         $(LI Register/unregister such data with calls to $(LREF addRoot)/$(LREF removeRoot) and
30         $(LREF addRange)/$(LREF removeRange).)
31         $(LI Maintain another reference to that same data in another thread that the
32         GC does know about.)
33         $(LI Disable GC collection cycles while that thread is active with $(LREF disable)/$(LREF enable).)
34         $(LI Register the thread with the GC using $(REF thread_attachThis, core,thread,osthread)/$(REF thread_detachThis, core,thread,threadbase).)
35         )
36    )
37    )
38  *
39  * Notes_to_implementors:
40  * $(UL
41  * $(LI On POSIX systems, the signals `SIGRTMIN` and `SIGRTMIN + 1` are reserved
42  *   by this module for use in the garbage collector implementation.
43  *   Typically, they will be used to stop and resume other threads
44  *   when performing a collection, but an implementation may choose
45  *   not to use this mechanism (or not stop the world at all, in the
46  *   case of concurrent garbage collectors).)
47  *
48  * $(LI Registers, the stack, and any other _memory locations added through
49  *   the $(D GC.$(LREF addRange)) function are always scanned conservatively.
50  *   This means that even if a variable is e.g. of type $(D float),
51  *   it will still be scanned for possible GC pointers. And, if the
52  *   word-interpreted representation of the variable matches a GC-managed
53  *   _memory block's address, that _memory block is considered live.)
54  *
55  * $(LI Implementations are free to scan the non-root heap in a precise
56  *   manner, so that fields of types like $(D float) will not be considered
57  *   relevant when scanning the heap. Thus, casting a GC pointer to an
58  *   integral type (e.g. $(D size_t)) and storing it in a field of that
59  *   type inside the GC heap may mean that it will not be recognized
60  *   if the _memory block was allocated with precise type info or with
61  *   the $(D GC.BlkAttr.$(LREF NO_SCAN)) attribute.)
62  *
63  * $(LI Destructors will always be executed while other threads are
64  *   active; that is, an implementation that stops the world must not
65  *   execute destructors until the world has been resumed.)
66  *
67  * $(LI A destructor of an object must not access object references
68  *   within the object. This means that an implementation is free to
69  *   optimize based on this rule.)
70  *
71  * $(LI An implementation is free to perform heap compaction and copying
72  *   so long as no valid GC pointers are invalidated in the process.
73  *   However, _memory allocated with $(D GC.BlkAttr.$(LREF NO_MOVE)) must
74  *   not be moved/copied.)
75  *
76  * $(LI Implementations must support interior pointers. That is, if the
77  *   only reference to a GC-managed _memory block points into the
78  *   middle of the block rather than the beginning (for example), the
79  *   GC must consider the _memory block live. The exception to this
80  *   rule is when a _memory block is allocated with the
81  *   $(D GC.BlkAttr.$(LREF NO_INTERIOR)) attribute; it is the user's
82  *   responsibility to make sure such _memory blocks have a proper pointer
83  *   to them when they should be considered live.)
84  *
85  * $(LI It is acceptable for an implementation to store bit flags into
86  *   pointer values and GC-managed _memory blocks, so long as such a
87  *   trick is not visible to the application. In practice, this means
88  *   that only a stop-the-world collector can do this.)
89  *
90  * $(LI Implementations are free to assume that GC pointers are only
91  *   stored on word boundaries. Unaligned pointers may be ignored
92  *   entirely.)
93  *
94  * $(LI Implementations are free to run collections at any point. It is,
95  *   however, recommendable to only do so when an allocation attempt
96  *   happens and there is insufficient _memory available.)
97  * )
98  *
99  * Copyright: Copyright Sean Kelly 2005 - 2015.
100  * License:   $(LINK2 http://www.boost.org/LICENSE_1_0.txt, Boost License 1.0)
101  * Authors:   Sean Kelly, Alex Rønne Petersen
102  * Source:    $(DRUNTIMESRC core/_memory.d)
103  */
104 
105 module core.memory;
106 
107 
108 version (CRuntime_LIBWASM) {
109 // stub
110 struct GC {
111     
112     struct BlkInfo
113     {
114         void*  base;
115         size_t size;
116         uint   attr;
117     }
118 
119     enum BlkAttr : uint
120         {
121             NONE        = 0b0000_0000, /// No attributes set.
122             FINALIZE    = 0b0000_0001, /// Finalize the data in this block on collect.
123             NO_SCAN     = 0b0000_0010, /// Do not scan through this block on collect.
124             NO_MOVE     = 0b0000_0100, /// Do not move this memory block on collect.
125             APPENDABLE  = 0b0000_1000,
126             NO_INTERIOR = 0b0001_0000,
127             STRUCTFINAL = 0b0010_0000, 
128         }
129 
130     }
131 } else: // we don't use any of this
132 version (ARM)
133     version = AnyARM;
134 else version (AArch64)
135     version = AnyARM;
136 
137 version (iOS)
138     version = iOSDerived;
139 else version (TVOS)
140     version = iOSDerived;
141 else version (WatchOS)
142     version = iOSDerived;
143 
144 private
145 {
146     extern (C) uint gc_getAttr( void* p ) pure nothrow;
147     extern (C) uint gc_setAttr( void* p, uint a ) pure nothrow;
148     extern (C) uint gc_clrAttr( void* p, uint a ) pure nothrow;
149 
150     extern (C) void*   gc_addrOf( void* p ) pure nothrow @nogc;
151     extern (C) size_t  gc_sizeOf( void* p ) pure nothrow @nogc;
152 
153     struct BlkInfo_
154     {
155         void*  base;
156         size_t size;
157         uint   attr;
158     }
159 
160     extern (C) BlkInfo_ gc_query(return scope void* p) pure nothrow;
161     extern (C) GC.Stats gc_stats ( ) @safe nothrow @nogc;
162     extern (C) GC.ProfileStats gc_profileStats ( ) nothrow @nogc @safe;
163 }
164 
165 version (CoreDoc)
166 {
167     /**
168      * The minimum size of a system page in bytes.
169      *
170      * This is a compile time, platform specific value. This value might not
171      * be accurate, since it might be possible to change this value. Whenever
172      * possible, please use $(LREF pageSize) instead, which is initialized
173      * during runtime.
174      *
175      * The minimum size is useful when the context requires a compile time known
176      * value, like the size of a static array: `ubyte[minimumPageSize] buffer`.
177      */
178     enum minimumPageSize : size_t;
179 }
180 else version (AnyARM)
181 {
182     version (iOSDerived)
183         enum size_t minimumPageSize = 16384;
184     else
185         enum size_t minimumPageSize = 4096;
186 }
187 else
188     enum size_t minimumPageSize = 4096;
189 
190 ///
191 unittest
192 {
193     ubyte[minimumPageSize] buffer;
194 }
195 
196 /**
197  * The size of a system page in bytes.
198  *
199  * This value is set at startup time of the application. It's safe to use
200  * early in the start process, like in shared module constructors and
201  * initialization of the D runtime itself.
202  */
203 immutable size_t pageSize;
204 
205 ///
206 unittest
207 {
208     ubyte[] buffer = new ubyte[pageSize];
209 }
210 
211 // The reason for this elaborated way of declaring a function is:
212 //
213 // * `pragma(crt_constructor)` is used to declare a constructor that is called by
214 // the C runtime, before C main. This allows the `pageSize` value to be used
215 // during initialization of the D runtime. This also avoids any issues with
216 // static module constructors and circular references.
217 //
218 // * `pragma(mangle)` is used because `pragma(crt_constructor)` requires a
219 // function with C linkage. To avoid any name conflict with other C symbols,
220 // standard D mangling is used.
221 //
222 // * The extra function declaration, without the body, is to be able to get the
223 // D mangling of the function without the need to hardcode the value.
224 //
225 // * The extern function declaration also has the side effect of making it
226 // impossible to manually call the function with standard syntax. This is to
227 // make it more difficult to call the function again, manually.
228 private void initialize();
229 pragma(crt_constructor)
230 pragma(mangle, initialize.mangleof)
231 private extern (C) void _initialize() @system
232 {
233     version (WASI) {
234         import core.sys.wasi.config : PAGE_SIZE;
235         cast() pageSize = PAGE_SIZE;
236     }
237     else version (Posix)
238     {
239         import core.sys.posix.unistd : sysconf, _SC_PAGESIZE;
240 
241         (cast() pageSize) = cast(size_t) sysconf(_SC_PAGESIZE);
242     }
243     else version (Windows)
244     {
245         import core.sys.windows.winbase : GetSystemInfo, SYSTEM_INFO;
246 
247         SYSTEM_INFO si;
248         GetSystemInfo(&si);
249         (cast() pageSize) = cast(size_t) si.dwPageSize;
250     }
251     else
252         static assert(false, __FUNCTION__ ~ " is not implemented on this platform");
253 }
254 
255 /**
256  * This struct encapsulates all garbage collection functionality for the D
257  * programming language.
258  */
259 struct GC
260 {
261     @disable this();
262 
263     /**
264      * Aggregation of GC stats to be exposed via public API
265      */
266     static struct Stats
267     {
268         /// number of used bytes on the GC heap (might only get updated after a collection)
269         size_t usedSize;
270         /// number of free bytes on the GC heap (might only get updated after a collection)
271         size_t freeSize;
272         /// number of bytes allocated for current thread since program start
273         ulong allocatedInCurrentThread;
274     }
275 
276     /**
277      * Aggregation of current profile information
278      */
279     static struct ProfileStats
280     {
281         import core.time : Duration;
282         /// total number of GC cycles
283         size_t numCollections;
284         /// total time spent doing GC
285         Duration totalCollectionTime;
286         /// total time threads were paused doing GC
287         Duration totalPauseTime;
288         /// largest time threads were paused during one GC cycle
289         Duration maxPauseTime;
290         /// largest time spent doing one GC cycle
291         Duration maxCollectionTime;
292     }
293 
294 extern(C):
295 
296     /**
297      * Enables automatic garbage collection behavior if collections have
298      * previously been suspended by a call to disable.  This function is
299      * reentrant, and must be called once for every call to disable before
300      * automatic collections are enabled.
301      */
302     pragma(mangle, "gc_enable") static void enable() @safe nothrow pure;
303 
304 
305     /**
306      * Disables automatic garbage collections performed to minimize the
307      * process footprint.  Collections may continue to occur in instances
308      * where the implementation deems necessary for correct program behavior,
309      * such as during an out of memory condition.  This function is reentrant,
310      * but enable must be called once for each call to disable.
311      */
312     pragma(mangle, "gc_disable") static void disable() @safe nothrow pure;
313 
314 
315     /**
316      * Begins a full collection.  While the meaning of this may change based
317      * on the garbage collector implementation, typical behavior is to scan
318      * all stack segments for roots, mark accessible memory blocks as alive,
319      * and then to reclaim free space.  This action may need to suspend all
320      * running threads for at least part of the collection process.
321      */
322     pragma(mangle, "gc_collect") static void collect() @safe nothrow pure;
323 
324     /**
325      * Indicates that the managed memory space be minimized by returning free
326      * physical memory to the operating system.  The amount of free memory
327      * returned depends on the allocator design and on program behavior.
328      */
329     pragma(mangle, "gc_minimize") static void minimize() @safe nothrow pure;
330 
331 extern(D):
332 
333     /**
334      * Elements for a bit field representing memory block attributes.  These
335      * are manipulated via the getAttr, setAttr, clrAttr functions.
336      */
337     enum BlkAttr : uint
338     {
339         NONE        = 0b0000_0000, /// No attributes set.
340         FINALIZE    = 0b0000_0001, /// Finalize the data in this block on collect.
341         NO_SCAN     = 0b0000_0010, /// Do not scan through this block on collect.
342         NO_MOVE     = 0b0000_0100, /// Do not move this memory block on collect.
343         /**
344         This block contains the info to allow appending.
345 
346         This can be used to manually allocate arrays. Initial slice size is 0.
347 
348         Note: The slice's usable size will not match the block size. Use
349         $(LREF capacity) to retrieve actual usable capacity.
350 
351         Example:
352         ----
353         // Allocate the underlying array.
354         int*  pToArray = cast(int*)GC.malloc(10 * int.sizeof, GC.BlkAttr.NO_SCAN | GC.BlkAttr.APPENDABLE);
355         // Bind a slice. Check the slice has capacity information.
356         int[] slice = pToArray[0 .. 0];
357         assert(capacity(slice) > 0);
358         // Appending to the slice will not relocate it.
359         slice.length = 5;
360         slice ~= 1;
361         assert(slice.ptr == p);
362         ----
363         */
364         APPENDABLE  = 0b0000_1000,
365 
366         /**
367         This block is guaranteed to have a pointer to its base while it is
368         alive.  Interior pointers can be safely ignored.  This attribute is
369         useful for eliminating false pointers in very large data structures
370         and is only implemented for data structures at least a page in size.
371         */
372         NO_INTERIOR = 0b0001_0000,
373 
374         STRUCTFINAL = 0b0010_0000, // the block has a finalizer for (an array of) structs
375     }
376 
377 
378     /**
379      * Contains aggregate information about a block of managed memory.  The
380      * purpose of this struct is to support a more efficient query style in
381      * instances where detailed information is needed.
382      *
383      * base = A pointer to the base of the block in question.
384      * size = The size of the block, calculated from base.
385      * attr = Attribute bits set on the memory block.
386      */
387     alias BlkInfo = BlkInfo_;
388 
389 
390     /**
391      * Returns a bit field representing all block attributes set for the memory
392      * referenced by p.  If p references memory not originally allocated by
393      * this garbage collector, points to the interior of a memory block, or if
394      * p is null, zero will be returned.
395      *
396      * Params:
397      *  p = A pointer to the root of a valid memory block or to null.
398      *
399      * Returns:
400      *  A bit field containing any bits set for the memory block referenced by
401      *  p or zero on error.
402      */
403     static uint getAttr( const scope void* p ) nothrow
404     {
405         return gc_getAttr(cast(void*) p);
406     }
407 
408 
409     /// ditto
410     static uint getAttr(void* p) pure nothrow
411     {
412         return gc_getAttr( p );
413     }
414 
415 
416     /**
417      * Sets the specified bits for the memory references by p.  If p references
418      * memory not originally allocated by this garbage collector, points to the
419      * interior of a memory block, or if p is null, no action will be
420      * performed.
421      *
422      * Params:
423      *  p = A pointer to the root of a valid memory block or to null.
424      *  a = A bit field containing any bits to set for this memory block.
425      *
426      * Returns:
427      *  The result of a call to getAttr after the specified bits have been
428      *  set.
429      */
430     static uint setAttr( const scope void* p, uint a ) nothrow
431     {
432         return gc_setAttr(cast(void*) p, a);
433     }
434 
435 
436     /// ditto
437     static uint setAttr(void* p, uint a) pure nothrow
438     {
439         return gc_setAttr( p, a );
440     }
441 
442 
443     /**
444      * Clears the specified bits for the memory references by p.  If p
445      * references memory not originally allocated by this garbage collector,
446      * points to the interior of a memory block, or if p is null, no action
447      * will be performed.
448      *
449      * Params:
450      *  p = A pointer to the root of a valid memory block or to null.
451      *  a = A bit field containing any bits to clear for this memory block.
452      *
453      * Returns:
454      *  The result of a call to getAttr after the specified bits have been
455      *  cleared.
456      */
457     static uint clrAttr( const scope void* p, uint a ) nothrow
458     {
459         return gc_clrAttr(cast(void*) p, a);
460     }
461 
462 
463     /// ditto
464     static uint clrAttr(void* p, uint a) pure nothrow
465     {
466         return gc_clrAttr( p, a );
467     }
468 
469 extern(C):
470 
471     /**
472      * Requests an aligned block of managed memory from the garbage collector.
473      * This memory may be deleted at will with a call to free, or it may be
474      * discarded and cleaned up automatically during a collection run.  If
475      * allocation fails, this function will call onOutOfMemory which is
476      * expected to throw an OutOfMemoryError.
477      *
478      * Params:
479      *  sz = The desired allocation size in bytes.
480      *  ba = A bitmask of the attributes to set on this block.
481      *  ti = TypeInfo to describe the memory. The GC might use this information
482      *       to improve scanning for pointers or to call finalizers.
483      *
484      * Returns:
485      *  A reference to the allocated memory or null if insufficient memory
486      *  is available.
487      *
488      * Throws:
489      *  OutOfMemoryError on allocation failure.
490      */
491     version (D_ProfileGC)
492         pragma(mangle, "gc_mallocTrace") static void* malloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null,
493             string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow;
494     else
495         pragma(mangle, "gc_malloc") static void* malloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null) pure nothrow;
496 
497     /**
498      * Requests an aligned block of managed memory from the garbage collector.
499      * This memory may be deleted at will with a call to free, or it may be
500      * discarded and cleaned up automatically during a collection run.  If
501      * allocation fails, this function will call onOutOfMemory which is
502      * expected to throw an OutOfMemoryError.
503      *
504      * Params:
505      *  sz = The desired allocation size in bytes.
506      *  ba = A bitmask of the attributes to set on this block.
507      *  ti = TypeInfo to describe the memory. The GC might use this information
508      *       to improve scanning for pointers or to call finalizers.
509      *
510      * Returns:
511      *  Information regarding the allocated memory block or BlkInfo.init on
512      *  error.
513      *
514      * Throws:
515      *  OutOfMemoryError on allocation failure.
516      */
517     version (D_ProfileGC)
518         pragma(mangle, "gc_qallocTrace") static BlkInfo qalloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null,
519             string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow;
520     else
521         pragma(mangle, "gc_qalloc") static BlkInfo qalloc(size_t sz, uint ba = 0, const scope TypeInfo ti = null) pure nothrow;
522 
523 
524     /**
525      * Requests an aligned block of managed memory from the garbage collector,
526      * which is initialized with all bits set to zero.  This memory may be
527      * deleted at will with a call to free, or it may be discarded and cleaned
528      * up automatically during a collection run.  If allocation fails, this
529      * function will call onOutOfMemory which is expected to throw an
530      * OutOfMemoryError.
531      *
532      * Params:
533      *  sz = The desired allocation size in bytes.
534      *  ba = A bitmask of the attributes to set on this block.
535      *  ti = TypeInfo to describe the memory. The GC might use this information
536      *       to improve scanning for pointers or to call finalizers.
537      *
538      * Returns:
539      *  A reference to the allocated memory or null if insufficient memory
540      *  is available.
541      *
542      * Throws:
543      *  OutOfMemoryError on allocation failure.
544      */
545     version (D_ProfileGC)
546         pragma(mangle, "gc_callocTrace") static void* calloc(size_t sz, uint ba = 0, const TypeInfo ti = null,
547             string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow;
548     else
549         pragma(mangle, "gc_calloc") static void* calloc(size_t sz, uint ba = 0, const TypeInfo ti = null) pure nothrow;
550 
551 
552     /**
553      * Extend, shrink or allocate a new block of memory keeping the contents of
554      * an existing block
555      *
556      * If `sz` is zero, the memory referenced by p will be deallocated as if
557      * by a call to `free`.
558      * If `p` is `null`, new memory will be allocated via `malloc`.
559      * If `p` is pointing to memory not allocated from the GC or to the interior
560      * of an allocated memory block, no operation is performed and null is returned.
561      *
562      * Otherwise, a new memory block of size `sz` will be allocated as if by a
563      * call to `malloc`, or the implementation may instead resize or shrink the memory
564      * block in place.
565      * The contents of the new memory block will be the same as the contents
566      * of the old memory block, up to the lesser of the new and old sizes.
567      *
568      * The caller guarantees that there are no other live pointers to the
569      * passed memory block, still it might not be freed immediately by `realloc`.
570      * The garbage collector can reclaim the memory block in a later
571      * collection if it is unused.
572      * If allocation fails, this function will throw an `OutOfMemoryError`.
573      *
574      * If `ba` is zero (the default) the attributes of the existing memory
575      * will be used for an allocation.
576      * If `ba` is not zero and no new memory is allocated, the bits in ba will
577      * replace those of the current memory block.
578      *
579      * Params:
580      *  p  = A pointer to the base of a valid memory block or to `null`.
581      *  sz = The desired allocation size in bytes.
582      *  ba = A bitmask of the BlkAttr attributes to set on this block.
583      *  ti = TypeInfo to describe the memory. The GC might use this information
584      *       to improve scanning for pointers or to call finalizers.
585      *
586      * Returns:
587      *  A reference to the allocated memory on success or `null` if `sz` is
588      *  zero or the pointer does not point to the base of an GC allocated
589      *  memory block.
590      *
591      * Throws:
592      *  `OutOfMemoryError` on allocation failure.
593      */
594     version (D_ProfileGC)
595         pragma(mangle, "gc_reallocTrace") static void* realloc(return scope void* p, size_t sz, uint ba = 0, const TypeInfo ti = null,
596             string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow;
597     else
598         pragma(mangle, "gc_realloc") static void* realloc(return scope void* p, size_t sz, uint ba = 0, const TypeInfo ti = null) pure nothrow;
599 
600     // https://issues.dlang.org/show_bug.cgi?id=13111
601     ///
602     unittest
603     {
604         enum size1 = 1 << 11 + 1; // page in large object pool
605         enum size2 = 1 << 22 + 1; // larger than large object pool size
606 
607         auto data1 = cast(ubyte*)GC.calloc(size1);
608         auto data2 = cast(ubyte*)GC.realloc(data1, size2);
609 
610         GC.BlkInfo info = GC.query(data2);
611         assert(info.size >= size2);
612     }
613 
614 
615     /**
616      * Requests that the managed memory block referenced by p be extended in
617      * place by at least mx bytes, with a desired extension of sz bytes.  If an
618      * extension of the required size is not possible or if p references memory
619      * not originally allocated by this garbage collector, no action will be
620      * taken.
621      *
622      * Params:
623      *  p  = A pointer to the root of a valid memory block or to null.
624      *  mx = The minimum extension size in bytes.
625      *  sz = The desired extension size in bytes.
626      *  ti = TypeInfo to describe the full memory block. The GC might use
627      *       this information to improve scanning for pointers or to
628      *       call finalizers.
629      *
630      * Returns:
631      *  The size in bytes of the extended memory block referenced by p or zero
632      *  if no extension occurred.
633      *
634      * Note:
635      *  Extend may also be used to extend slices (or memory blocks with
636      *  $(LREF APPENDABLE) info). However, use the return value only
637      *  as an indicator of success. $(LREF capacity) should be used to
638      *  retrieve actual usable slice capacity.
639      */
640     version (D_ProfileGC)
641         pragma(mangle, "gc_extendTrace") static size_t extend(void* p, size_t mx, size_t sz, const TypeInfo ti = null,
642             string file = __FILE__, int line = __LINE__, string func = __FUNCTION__) pure nothrow;
643     else
644         pragma(mangle, "gc_extend") static size_t extend(void* p, size_t mx, size_t sz, const TypeInfo ti = null) pure nothrow;
645 
646     /// Standard extending
647     unittest
648     {
649         size_t size = 1000;
650         int* p = cast(int*)GC.malloc(size * int.sizeof, GC.BlkAttr.NO_SCAN);
651 
652         //Try to extend the allocated data by 1000 elements, preferred 2000.
653         size_t u = GC.extend(p, 1000 * int.sizeof, 2000 * int.sizeof);
654         if (u != 0)
655             size = u / int.sizeof;
656     }
657     /// slice extending
658     unittest
659     {
660         int[] slice = new int[](1000);
661         int*  p     = slice.ptr;
662 
663         //Check we have access to capacity before attempting the extend
664         if (slice.capacity)
665         {
666             //Try to extend slice by 1000 elements, preferred 2000.
667             size_t u = GC.extend(p, 1000 * int.sizeof, 2000 * int.sizeof);
668             if (u != 0)
669             {
670                 slice.length = slice.capacity;
671                 assert(slice.length >= 2000);
672             }
673         }
674     }
675 
676 
677     /**
678      * Requests that at least sz bytes of memory be obtained from the operating
679      * system and marked as free.
680      *
681      * Params:
682      *  sz = The desired size in bytes.
683      *
684      * Returns:
685      *  The actual number of bytes reserved or zero on error.
686      */
687     pragma(mangle, "gc_reserve") static size_t reserve(size_t sz) nothrow pure;
688 
689 
690     /**
691      * Deallocates the memory referenced by p.  If p is null, no action occurs.
692      * If p references memory not originally allocated by this garbage
693      * collector, if p points to the interior of a memory block, or if this
694      * method is called from a finalizer, no action will be taken.  The block
695      * will not be finalized regardless of whether the FINALIZE attribute is
696      * set.  If finalization is desired, call $(REF1 destroy, object) prior to `GC.free`.
697      *
698      * Params:
699      *  p = A pointer to the root of a valid memory block or to null.
700      */
701     pragma(mangle, "gc_free") static void free(void* p) pure nothrow @nogc;
702 
703 extern(D):
704 
705     /**
706      * Returns the base address of the memory block containing p.  This value
707      * is useful to determine whether p is an interior pointer, and the result
708      * may be passed to routines such as sizeOf which may otherwise fail.  If p
709      * references memory not originally allocated by this garbage collector, if
710      * p is null, or if the garbage collector does not support this operation,
711      * null will be returned.
712      *
713      * Params:
714      *  p = A pointer to the root or the interior of a valid memory block or to
715      *      null.
716      *
717      * Returns:
718      *  The base address of the memory block referenced by p or null on error.
719      */
720     static inout(void)* addrOf( inout(void)* p ) nothrow @nogc pure @trusted
721     {
722         return cast(inout(void)*)gc_addrOf(cast(void*)p);
723     }
724 
725     /// ditto
726     static void* addrOf(void* p) pure nothrow @nogc @trusted
727     {
728         return gc_addrOf(p);
729     }
730 
731     /**
732      * Returns the true size of the memory block referenced by p.  This value
733      * represents the maximum number of bytes for which a call to realloc may
734      * resize the existing block in place.  If p references memory not
735      * originally allocated by this garbage collector, points to the interior
736      * of a memory block, or if p is null, zero will be returned.
737      *
738      * Params:
739      *  p = A pointer to the root of a valid memory block or to null.
740      *
741      * Returns:
742      *  The size in bytes of the memory block referenced by p or zero on error.
743      */
744     static size_t sizeOf( const scope void* p ) nothrow @nogc /* FIXME pure */
745     {
746         return gc_sizeOf(cast(void*)p);
747     }
748 
749 
750     /// ditto
751     static size_t sizeOf(void* p) pure nothrow @nogc
752     {
753         return gc_sizeOf( p );
754     }
755 
756     // verify that the reallocation doesn't leave the size cache in a wrong state
757     unittest
758     {
759         auto data = cast(int*)realloc(null, 4096);
760         size_t size = GC.sizeOf(data);
761         assert(size >= 4096);
762         data = cast(int*)GC.realloc(data, 4100);
763         size = GC.sizeOf(data);
764         assert(size >= 4100);
765     }
766 
767     /**
768      * Returns aggregate information about the memory block containing p.  If p
769      * references memory not originally allocated by this garbage collector, if
770      * p is null, or if the garbage collector does not support this operation,
771      * BlkInfo.init will be returned.  Typically, support for this operation
772      * is dependent on support for addrOf.
773      *
774      * Params:
775      *  p = A pointer to the root or the interior of a valid memory block or to
776      *      null.
777      *
778      * Returns:
779      *  Information regarding the memory block referenced by p or BlkInfo.init
780      *  on error.
781      */
782     static BlkInfo query(return scope const void* p) nothrow
783     {
784         return gc_query(cast(void*)p);
785     }
786 
787 
788     /// ditto
789     static BlkInfo query(return scope void* p) pure nothrow
790     {
791         return gc_query( p );
792     }
793 
794     /**
795      * Returns runtime stats for currently active GC implementation
796      * See `core.memory.GC.Stats` for list of available metrics.
797      */
798     static Stats stats() @safe nothrow @nogc
799     {
800         return gc_stats();
801     }
802 
803     /**
804      * Returns runtime profile stats for currently active GC implementation
805      * See `core.memory.GC.ProfileStats` for list of available metrics.
806      */
807     static ProfileStats profileStats() nothrow @nogc @safe
808     {
809         return gc_profileStats();
810     }
811 
812 extern(C):
813 
814     /**
815      * Adds an internal root pointing to the GC memory block referenced by p.
816      * As a result, the block referenced by p itself and any blocks accessible
817      * via it will be considered live until the root is removed again.
818      *
819      * If p is null, no operation is performed.
820      *
821      * Params:
822      *  p = A pointer into a GC-managed memory block or null.
823      *
824      * Example:
825      * ---
826      * // Typical C-style callback mechanism; the passed function
827      * // is invoked with the user-supplied context pointer at a
828      * // later point.
829      * extern(C) void addCallback(void function(void*), void*);
830      *
831      * // Allocate an object on the GC heap (this would usually be
832      * // some application-specific context data).
833      * auto context = new Object;
834      *
835      * // Make sure that it is not collected even if it is no
836      * // longer referenced from D code (stack, GC heap, …).
837      * GC.addRoot(cast(void*)context);
838      *
839      * // Also ensure that a moving collector does not relocate
840      * // the object.
841      * GC.setAttr(cast(void*)context, GC.BlkAttr.NO_MOVE);
842      *
843      * // Now context can be safely passed to the C library.
844      * addCallback(&myHandler, cast(void*)context);
845      *
846      * extern(C) void myHandler(void* ctx)
847      * {
848      *     // Assuming that the callback is invoked only once, the
849      *     // added root can be removed again now to allow the GC
850      *     // to collect it later.
851      *     GC.removeRoot(ctx);
852      *     GC.clrAttr(ctx, GC.BlkAttr.NO_MOVE);
853      *
854      *     auto context = cast(Object)ctx;
855      *     // Use context here…
856      * }
857      * ---
858      */
859     pragma(mangle, "gc_addRoot") static void addRoot(const void* p) nothrow @nogc pure;
860 
861 
862     /**
863      * Removes the memory block referenced by p from an internal list of roots
864      * to be scanned during a collection.  If p is null or is not a value
865      * previously passed to addRoot() then no operation is performed.
866      *
867      * Params:
868      *  p = A pointer into a GC-managed memory block or null.
869      */
870     pragma(mangle, "gc_removeRoot") static void removeRoot(const void* p) nothrow @nogc pure;
871 
872 
873     /**
874      * Adds $(D p[0 .. sz]) to the list of memory ranges to be scanned for
875      * pointers during a collection. If p is null, no operation is performed.
876      *
877      * Note that $(D p[0 .. sz]) is treated as an opaque range of memory assumed
878      * to be suitably managed by the caller. In particular, if p points into a
879      * GC-managed memory block, addRange does $(I not) mark this block as live.
880      *
881      * Params:
882      *  p  = A pointer to a valid memory address or to null.
883      *  sz = The size in bytes of the block to add. If sz is zero then the
884      *       no operation will occur. If p is null then sz must be zero.
885      *  ti = TypeInfo to describe the memory. The GC might use this information
886      *       to improve scanning for pointers or to call finalizers
887      *
888      * Example:
889      * ---
890      * // Allocate a piece of memory on the C heap.
891      * enum size = 1_000;
892      * auto rawMemory = core.stdc.stdlib.malloc(size);
893      *
894      * // Add it as a GC range.
895      * GC.addRange(rawMemory, size);
896      *
897      * // Now, pointers to GC-managed memory stored in
898      * // rawMemory will be recognized on collection.
899      * ---
900      */
901     pragma(mangle, "gc_addRange")
902     static void addRange(const void* p, size_t sz, const TypeInfo ti = null) @nogc nothrow pure;
903 
904 
905     /**
906      * Removes the memory range starting at p from an internal list of ranges
907      * to be scanned during a collection. If p is null or does not represent
908      * a value previously passed to addRange() then no operation is
909      * performed.
910      *
911      * Params:
912      *  p  = A pointer to a valid memory address or to null.
913      */
914     pragma(mangle, "gc_removeRange") static void removeRange(const void* p) nothrow @nogc pure;
915 
916 
917     /**
918      * Runs any finalizer that is located in address range of the
919      * given code segment.  This is used before unloading shared
920      * libraries.  All matching objects which have a finalizer in this
921      * code segment are assumed to be dead, using them while or after
922      * calling this method has undefined behavior.
923      *
924      * Params:
925      *  segment = address range of a code segment.
926      */
927     pragma(mangle, "gc_runFinalizers") static void runFinalizers(const scope void[] segment);
928 
929     /**
930      * Queries the GC whether the current thread is running object finalization
931      * as part of a GC collection, or an explicit call to runFinalizers.
932      *
933      * As some GC implementations (such as the current conservative one) don't
934      * support GC memory allocation during object finalization, this function
935      * can be used to guard against such programming errors.
936      *
937      * Returns:
938      *  true if the current thread is in a finalizer, a destructor invoked by
939      *  the GC.
940      */
941     pragma(mangle, "gc_inFinalizer") static bool inFinalizer() nothrow @nogc @safe;
942 
943     ///
944     @safe nothrow @nogc unittest
945     {
946         // Only code called from a destructor is executed during finalization.
947         assert(!GC.inFinalizer);
948     }
949 
950     ///
951     unittest
952     {
953         enum Outcome
954         {
955             notCalled,
956             calledManually,
957             calledFromDruntime
958         }
959 
960         static class Resource
961         {
962             static Outcome outcome;
963 
964             this()
965             {
966                 outcome = Outcome.notCalled;
967             }
968 
969             ~this()
970             {
971                 if (GC.inFinalizer)
972                 {
973                     outcome = Outcome.calledFromDruntime;
974 
975                     import core.exception : InvalidMemoryOperationError;
976                     try
977                     {
978                         /*
979                          * Presently, allocating GC memory during finalization
980                          * is forbidden and leads to
981                          * `InvalidMemoryOperationError` being thrown.
982                          *
983                          * `GC.inFinalizer` can be used to guard against
984                          * programming erros such as these and is also a more
985                          * efficient way to verify whether a destructor was
986                          * invoked by the GC.
987                          */
988                         cast(void) GC.malloc(1);
989                         assert(false);
990                     }
991                     catch (InvalidMemoryOperationError e)
992                     {
993                         return;
994                     }
995                     assert(false);
996                 }
997                 else
998                     outcome = Outcome.calledManually;
999             }
1000         }
1001 
1002         static void createGarbage()
1003         {
1004             auto r = new Resource;
1005             r = null;
1006         }
1007 
1008         assert(Resource.outcome == Outcome.notCalled);
1009         createGarbage();
1010         GC.collect;
1011         assert(
1012             Resource.outcome == Outcome.notCalled ||
1013             Resource.outcome == Outcome.calledFromDruntime);
1014 
1015         auto r = new Resource;
1016         GC.runFinalizers((cast(const void*)typeid(Resource).destructor)[0..1]);
1017         assert(Resource.outcome == Outcome.calledFromDruntime);
1018         Resource.outcome = Outcome.notCalled;
1019 
1020         debug(MEMSTOMP) {} else
1021         {
1022             // assume Resource data is still available
1023             r.destroy;
1024             assert(Resource.outcome == Outcome.notCalled);
1025         }
1026 
1027         r = new Resource;
1028         assert(Resource.outcome == Outcome.notCalled);
1029         r.destroy;
1030         assert(Resource.outcome == Outcome.calledManually);
1031     }
1032 
1033     /**
1034      * Returns the number of bytes allocated for the current thread
1035      * since program start. It is the same as
1036      * GC.stats().allocatedInCurrentThread, but faster.
1037      */
1038     pragma(mangle, "gc_allocatedInCurrentThread") static ulong allocatedInCurrentThread() nothrow;
1039 
1040     /// Using allocatedInCurrentThread
1041     nothrow unittest
1042     {
1043         ulong currentlyAllocated = GC.allocatedInCurrentThread();
1044         struct DataStruct
1045         {
1046             long l1;
1047             long l2;
1048             long l3;
1049             long l4;
1050         }
1051         DataStruct* unused = new DataStruct;
1052         assert(GC.allocatedInCurrentThread() == currentlyAllocated + 32);
1053         assert(GC.stats().allocatedInCurrentThread == currentlyAllocated + 32);
1054     }
1055 }
1056 
1057 /**
1058  * Pure variants of C's memory allocation functions `malloc`, `calloc`, and
1059  * `realloc` and deallocation function `free`.
1060  *
1061  * UNIX 98 requires that errno be set to ENOMEM upon failure.
1062  * Purity is achieved by saving and restoring the value of `errno`, thus
1063  * behaving as if it were never changed.
1064  *
1065  * See_Also:
1066  *     $(LINK2 https://dlang.org/spec/function.html#pure-functions, D's rules for purity),
1067  *     which allow for memory allocation under specific circumstances.
1068  */
1069 void* pureMalloc()(size_t size) @trusted pure @nogc nothrow
1070 {
1071     const errnosave = fakePureErrno;
1072     void* ret = fakePureMalloc(size);
1073     fakePureErrno = errnosave;
1074     return ret;
1075 }
1076 /// ditto
1077 void* pureCalloc()(size_t nmemb, size_t size) @trusted pure @nogc nothrow
1078 {
1079     const errnosave = fakePureErrno;
1080     void* ret = fakePureCalloc(nmemb, size);
1081     fakePureErrno = errnosave;
1082     return ret;
1083 }
1084 /// ditto
1085 void* pureRealloc()(void* ptr, size_t size) @system pure @nogc nothrow
1086 {
1087     const errnosave = fakePureErrno;
1088     void* ret = fakePureRealloc(ptr, size);
1089     fakePureErrno = errnosave;
1090     return ret;
1091 }
1092 
1093 /// ditto
1094 void pureFree()(void* ptr) @system pure @nogc nothrow
1095 {
1096     version (Posix)
1097     {
1098         // POSIX free doesn't set errno
1099         fakePureFree(ptr);
1100     }
1101     else
1102     {
1103         const errnosave = fakePureErrno;
1104         fakePureFree(ptr);
1105         fakePureErrno = errnosave;
1106     }
1107 }
1108 
1109 ///
1110 @system pure nothrow @nogc unittest
1111 {
1112     ubyte[] fun(size_t n) pure
1113     {
1114         void* p = pureMalloc(n);
1115         p !is null || n == 0 || assert(0);
1116         scope(failure) p = pureRealloc(p, 0);
1117         p = pureRealloc(p, n *= 2);
1118         p !is null || n == 0 || assert(0);
1119         return cast(ubyte[]) p[0 .. n];
1120     }
1121 
1122     auto buf = fun(100);
1123     assert(buf.length == 200);
1124     pureFree(buf.ptr);
1125 }
1126 
1127 @system pure nothrow @nogc unittest
1128 {
1129     const int errno = fakePureErrno();
1130 
1131     void* x = pureMalloc(10);            // normal allocation
1132     assert(errno == fakePureErrno()); // errno shouldn't change
1133     assert(x !is null);                   // allocation should succeed
1134 
1135     x = pureRealloc(x, 10);              // normal reallocation
1136     assert(errno == fakePureErrno()); // errno shouldn't change
1137     assert(x !is null);                   // allocation should succeed
1138 
1139     fakePureFree(x);
1140 
1141     void* y = pureCalloc(10, 1);         // normal zeroed allocation
1142     assert(errno == fakePureErrno()); // errno shouldn't change
1143     assert(y !is null);                   // allocation should succeed
1144 
1145     fakePureFree(y);
1146 
1147   version (LDC_AddressSanitizer)
1148   {
1149     // Test must be disabled because ASan will report an error: requested allocation size 0xffffffffffffff00 (0x700 after adjustments for alignment, red zones etc.) exceeds maximum supported size of 0x10000000000
1150   }
1151   else
1152   {
1153     // Workaround bug in glibc 2.26
1154     // See also: https://issues.dlang.org/show_bug.cgi?id=17956
1155     void* z = pureMalloc(size_t.max & ~255); // won't affect `errno`
1156     assert(errno == fakePureErrno()); // errno shouldn't change
1157   }
1158   version (LDC)
1159   {
1160     // LLVM's 'Combine redundant instructions' optimization pass
1161     // completely elides allocating `y` and `z`. Allocations with
1162     // sizes > 0 are apparently assumed to always succeed (and
1163     // return non-null), so the following assert fails with -O3.
1164   }
1165   else
1166   {
1167     assert(z is null);
1168   }
1169 }
1170 
1171 // locally purified for internal use here only
1172 
1173 static import core.stdc.errno;
1174 static if (__traits(getOverloads, core.stdc.errno, "errno").length == 1
1175     && __traits(getLinkage, core.stdc.errno.errno) == "C")
1176 {
1177     extern(C) pragma(mangle, __traits(identifier, core.stdc.errno.errno))
1178     private ref int fakePureErrno() @nogc nothrow pure @system;
1179 }
1180 else
1181 {
1182     extern(C) private @nogc nothrow pure @system
1183     {
1184         pragma(mangle, __traits(identifier, core.stdc.errno.getErrno))
1185         @property int fakePureErrno();
1186 
1187         pragma(mangle, __traits(identifier, core.stdc.errno.setErrno))
1188         @property int fakePureErrno(int);
1189     }
1190 }
1191 
1192 version (D_BetterC) {}
1193 else // TODO: remove this function after Phobos no longer needs it.
1194 extern (C) private @system @nogc nothrow
1195 {
1196     ref int fakePureErrnoImpl()
1197     {
1198         import core.stdc.errno;
1199         return errno();
1200     }
1201 }
1202 
1203 extern (C) private pure @system @nogc nothrow
1204 {
1205     pragma(mangle, "malloc") void* fakePureMalloc(size_t);
1206     pragma(mangle, "calloc") void* fakePureCalloc(size_t nmemb, size_t size);
1207     pragma(mangle, "realloc") void* fakePureRealloc(void* ptr, size_t size);
1208 
1209     pragma(mangle, "free") void fakePureFree(void* ptr);
1210 }
1211 
1212 /**
1213 Destroys and then deallocates an object.
1214 
1215 In detail, `__delete(x)` returns with no effect if `x` is `null`. Otherwise, it
1216 performs the following actions in sequence:
1217 $(UL
1218     $(LI
1219         Calls the destructor `~this()` for the object referred to by `x`
1220         (if `x` is a class or interface reference) or
1221         for the object pointed to by `x` (if `x` is a pointer to a `struct`).
1222         Arrays of structs call the destructor, if defined, for each element in the array.
1223         If no destructor is defined, this step has no effect.
1224     )
1225     $(LI
1226         Frees the memory allocated for `x`. If `x` is a reference to a class
1227         or interface, the memory allocated for the underlying instance is freed. If `x` is
1228         a pointer, the memory allocated for the pointed-to object is freed. If `x` is a
1229         built-in array, the memory allocated for the array is freed.
1230         If `x` does not refer to memory previously allocated with `new` (or the lower-level
1231         equivalents in the GC API), the behavior is undefined.
1232     )
1233     $(LI
1234         Lastly, `x` is set to `null`. Any attempt to read or write the freed memory via
1235         other references will result in undefined behavior.
1236     )
1237 )
1238 
1239 Note: Users should prefer $(REF1 destroy, object) to explicitly finalize objects,
1240 and only resort to $(REF __delete, core,memory) when $(REF destroy, object)
1241 wouldn't be a feasible option.
1242 
1243 Params:
1244     x = aggregate object that should be destroyed
1245 
1246 See_Also: $(REF1 destroy, object), $(REF free, core,GC)
1247 
1248 History:
1249 
1250 The `delete` keyword allowed to free GC-allocated memory.
1251 As this is inherently not `@safe`, it has been deprecated.
1252 This function has been added to provide an easy transition from `delete`.
1253 It performs the same functionality as the former `delete` keyword.
1254 */
1255 void __delete(T)(ref T x) @system
1256 {
1257     static void _destructRecurse(S)(ref S s)
1258     if (is(S == struct))
1259     {
1260         static if (__traits(hasMember, S, "__xdtor") &&
1261                    // Bugzilla 14746: Check that it's the exact member of S.
1262                    __traits(isSame, S, __traits(parent, s.__xdtor)))
1263             s.__xdtor();
1264     }
1265 
1266     // See also: https://github.com/dlang/dmd/blob/v2.078.0/src/dmd/e2ir.d#L3886
1267     static if (is(T == interface))
1268     {
1269         .object.destroy(x);
1270     }
1271     else static if (is(T == class))
1272     {
1273         .object.destroy(x);
1274     }
1275     else static if (is(T == U*, U))
1276     {
1277         static if (is(U == struct))
1278         {
1279             if (x)
1280                 _destructRecurse(*x);
1281         }
1282     }
1283     else static if (is(T : E[], E))
1284     {
1285         static if (is(E == struct))
1286         {
1287             foreach_reverse (ref e; x)
1288                 _destructRecurse(e);
1289         }
1290     }
1291     else
1292     {
1293         static assert(0, "It is not possible to delete: `" ~ T.stringof ~ "`");
1294     }
1295 
1296     static if (is(T == interface) ||
1297               is(T == class) ||
1298               is(T == U2*, U2))
1299     {
1300         GC.free(GC.addrOf(cast(void*) x));
1301         x = null;
1302     }
1303     else static if (is(T : E2[], E2))
1304     {
1305         GC.free(GC.addrOf(cast(void*) x.ptr));
1306         x = null;
1307     }
1308 }
1309 
1310 /// Deleting classes
1311 unittest
1312 {
1313     bool dtorCalled;
1314     class B
1315     {
1316         int test;
1317         ~this()
1318         {
1319             dtorCalled = true;
1320         }
1321     }
1322     B b = new B();
1323     B a = b;
1324     b.test = 10;
1325 
1326     assert(GC.addrOf(cast(void*) b) != null);
1327     __delete(b);
1328     assert(b is null);
1329     assert(dtorCalled);
1330     assert(GC.addrOf(cast(void*) b) == null);
1331     // but be careful, a still points to it
1332     assert(a !is null);
1333     assert(GC.addrOf(cast(void*) a) == null); // but not a valid GC pointer
1334 }
1335 
1336 /// Deleting interfaces
1337 unittest
1338 {
1339     bool dtorCalled;
1340     interface A
1341     {
1342         int quack();
1343     }
1344     class B : A
1345     {
1346         int a;
1347         int quack()
1348         {
1349             a++;
1350             return a;
1351         }
1352         ~this()
1353         {
1354             dtorCalled = true;
1355         }
1356     }
1357     A a = new B();
1358     a.quack();
1359 
1360     assert(GC.addrOf(cast(void*) a) != null);
1361     __delete(a);
1362     assert(a is null);
1363     assert(dtorCalled);
1364     assert(GC.addrOf(cast(void*) a) == null);
1365 }
1366 
1367 /// Deleting structs
1368 unittest
1369 {
1370     bool dtorCalled;
1371     struct A
1372     {
1373         string test;
1374         ~this()
1375         {
1376             dtorCalled = true;
1377         }
1378     }
1379     auto a = new A("foo");
1380 
1381     assert(GC.addrOf(cast(void*) a) != null);
1382     __delete(a);
1383     assert(a is null);
1384     assert(dtorCalled);
1385     assert(GC.addrOf(cast(void*) a) == null);
1386 
1387     // https://issues.dlang.org/show_bug.cgi?id=22779
1388     A *aptr;
1389     __delete(aptr);
1390 }
1391 
1392 /// Deleting arrays
1393 unittest
1394 {
1395     int[] a = [1, 2, 3];
1396     auto b = a;
1397 
1398     assert(GC.addrOf(b.ptr) != null);
1399     __delete(b);
1400     assert(b is null);
1401     assert(GC.addrOf(b.ptr) == null);
1402     // but be careful, a still points to it
1403     assert(a !is null);
1404     assert(GC.addrOf(a.ptr) == null); // but not a valid GC pointer
1405 }
1406 
1407 /// Deleting arrays of structs
1408 unittest
1409 {
1410     int dtorCalled;
1411     struct A
1412     {
1413         int a;
1414         ~this()
1415         {
1416             assert(dtorCalled == a);
1417             dtorCalled++;
1418         }
1419     }
1420     auto arr = [A(1), A(2), A(3)];
1421     arr[0].a = 2;
1422     arr[1].a = 1;
1423     arr[2].a = 0;
1424 
1425     assert(GC.addrOf(arr.ptr) != null);
1426     __delete(arr);
1427     assert(dtorCalled == 3);
1428     assert(GC.addrOf(arr.ptr) == null);
1429 }
1430 
1431 // Deleting raw memory
1432 unittest
1433 {
1434     import core.memory : GC;
1435     auto a = GC.malloc(5);
1436     assert(GC.addrOf(cast(void*) a) != null);
1437     __delete(a);
1438     assert(a is null);
1439     assert(GC.addrOf(cast(void*) a) == null);
1440 }
1441 
1442 // __delete returns with no effect if x is null
1443 unittest
1444 {
1445     Object x = null;
1446     __delete(x);
1447 
1448     struct S { ~this() { } }
1449     class C { }
1450     interface I { }
1451 
1452     int[] a; __delete(a);
1453     S[] as; __delete(as);
1454     C c; __delete(c);
1455     I i; __delete(i);
1456     C* pc = &c; __delete(*pc);
1457     I* pi = &i; __delete(*pi);
1458     int* pint; __delete(pint);
1459     S* ps; __delete(ps);
1460 }
1461 
1462 // https://issues.dlang.org/show_bug.cgi?id=19092
1463 unittest
1464 {
1465     const(int)[] x = [1, 2, 3];
1466     assert(GC.addrOf(x.ptr) != null);
1467     __delete(x);
1468     assert(x is null);
1469     assert(GC.addrOf(x.ptr) == null);
1470 
1471     immutable(int)[] y = [1, 2, 3];
1472     assert(GC.addrOf(y.ptr) != null);
1473     __delete(y);
1474     assert(y is null);
1475     assert(GC.addrOf(y.ptr) == null);
1476 }
1477 
1478 // test realloc behaviour
1479 unittest
1480 {
1481     static void set(int* p, size_t size)
1482     {
1483         foreach (i; 0 .. size)
1484             *p++ = cast(int) i;
1485     }
1486     static void verify(int* p, size_t size)
1487     {
1488         foreach (i; 0 .. size)
1489             assert(*p++ == i);
1490     }
1491     static void test(size_t memsize)
1492     {
1493         int* p = cast(int*) GC.malloc(memsize * int.sizeof);
1494         assert(p);
1495         set(p, memsize);
1496         verify(p, memsize);
1497 
1498         int* q = cast(int*) GC.realloc(p + 4, 2 * memsize * int.sizeof);
1499         assert(q == null);
1500 
1501         q = cast(int*) GC.realloc(p + memsize / 2, 2 * memsize * int.sizeof);
1502         assert(q == null);
1503 
1504         q = cast(int*) GC.realloc(p + memsize - 1, 2 * memsize * int.sizeof);
1505         assert(q == null);
1506 
1507         int* r = cast(int*) GC.realloc(p, 5 * memsize * int.sizeof);
1508         verify(r, memsize);
1509         set(r, 5 * memsize);
1510 
1511         int* s = cast(int*) GC.realloc(r, 2 * memsize * int.sizeof);
1512         verify(s, 2 * memsize);
1513 
1514         assert(GC.realloc(s, 0) == null); // free
1515         assert(GC.addrOf(p) == null);
1516     }
1517 
1518     test(16);
1519     test(200);
1520     test(800); // spans large and small pools
1521     test(1200);
1522     test(8000);
1523 
1524     void* p = GC.malloc(100);
1525     assert(GC.realloc(&p, 50) == null); // non-GC pointer
1526 }
1527 
1528 // test GC.profileStats
1529 unittest
1530 {
1531     auto stats = GC.profileStats();
1532     GC.collect();
1533     auto nstats = GC.profileStats();
1534     assert(nstats.numCollections > stats.numCollections);
1535 }
1536 
1537 // in rt.lifetime:
1538 private extern (C) void* _d_newitemU(scope const TypeInfo _ti) @system pure nothrow;
1539 
1540 /**
1541 Moves a value to a new GC allocation.
1542 
1543 Params:
1544     value = Value to be moved. If the argument is an lvalue and a struct with a
1545             destructor or postblit, it will be reset to its `.init` value.
1546 
1547 Returns:
1548     A pointer to the new GC-allocated value.
1549 */
1550 T* moveToGC(T)(auto ref T value)
1551 {
1552     static T* doIt(ref T value) @trusted
1553     {
1554         import core.lifetime : moveEmplace;
1555         auto mem = cast(T*) _d_newitemU(typeid(T)); // allocate but don't initialize
1556         moveEmplace(value, *mem);
1557         return mem;
1558     }
1559 
1560     return doIt(value); // T dtor might be @system
1561 }
1562 
1563 ///
1564 @safe pure nothrow unittest
1565 {
1566     struct S
1567     {
1568         int x;
1569         this(this) @disable;
1570         ~this() @safe pure nothrow @nogc {}
1571     }
1572 
1573     S* p;
1574 
1575     // rvalue
1576     p = moveToGC(S(123));
1577     assert(p.x == 123);
1578 
1579     // lvalue
1580     auto lval = S(456);
1581     p = moveToGC(lval);
1582     assert(p.x == 456);
1583     assert(lval.x == 0);
1584 }
1585 
1586 // @system dtor
1587 unittest
1588 {
1589     struct S
1590     {
1591         int x;
1592         ~this() @system {}
1593     }
1594 
1595     // lvalue case is @safe, ref param isn't destructed
1596     static assert(__traits(compiles, (ref S lval) @safe { moveToGC(lval); }));
1597 
1598     // rvalue case is @system, value param is destructed
1599     static assert(!__traits(compiles, () @safe { moveToGC(S(0)); }));
1600 }